Senin, 10 Desember 2012

Pemanfaatan Energi Nuklir dan PLTN


Latar belakang

Bila kita melihat berbagai aktivitas kehidupan, kita tidak akan pernah terlepas dari ketergantungan makhluk hidup terhadap energi.
Kebutuhan akan energi menjadi semakin penting abad ini. seiring dengan menipisnya sumber daya alam yang tersedia dan dampak dari aktivitas pemanfaatan energi tersebut bagi kehidupan. Untuk melakukan aktivitas hidup manusia di level yang
sederhana, kita memerlukan energi untuk hidup atau menggerakkan semua organ tubuh kita sampai pada sel-sel yang ada dalam tubuh kita. Energi tersebut biasanya didapat dari makanan, sinar matahari, alat-alat elektronik yang membantu tubuh untuk mendapatkan energi dan lain-lain. Di sisi lain aktivitas hidup manusia diluar tubuh manusia yang dapat menunjang hidup manusia diantaranya bisnis, kantor, industri, transportasi dan lainnya memerlukan energi baik itu dalam bentuk bahan bakar maupun listrik.

Penggunaan sumber energi yang berasal dari energi fosil saat ini dipandang sudah tidak lagi bisa diandalkan. Ismail (2009) dalam tulisannya mengatakan “sumber energi fosil saat ini sudah tidak bisa diandalkan secara penuh, ini dikarenakan cadangan minyak bumi yang terkandung di bumi sudah semakin menipis”. Dari pertimbangan di atas, kiranya perlu bagi umat manusia untuk menemukan sumber energi baru yang dapat diandalkan.

Dari pernyataan di atas telah jelas bahwa sesungguhnya dunia ini tak terkecuali di Indonesia sedang terancam oleh terjadinya krisis energi yang diakibatkan oleh menipisnya cadangan sumber energi. Hal tersebut apabila tidak segera diatasi akan menimbulkan berbagai kekacauan dan bukan tidak mungkin dapat menyulut terjadinya perang dunia karena perebutan cadangan sumber energi.


Fenomena krisis energi

Meningkatnya kebutuhan akan energi seiring dengan pertambahan penduduk mengakibatkan berkurangnya sumber energi dan terganggunya ekosistem di bumi akibat aktivitas manusia dalam pemanfaatan sumber-sumber energi tersebut salah satunya efek rumah kaca.

Pada dasarnya sumber energi dapat dikelompokkan menjadi dua kelompok besar, yakni sumber energi terbarukan dan sumber energi tak terbarukan. Sumber daya alam tak terbarukan adalah sumber daya yang terdapat di alam, tetapi alam sulit atau tidak dapat memperbaruinya. Contoh: minyak bumi dan batu bara.

Masyarakat pendukung kehadiran PLTN, sejauh ini mendasarkan pendapatnya pada tiga alasan pokok. Pertama, semakin berkurangnya cadangan energi fosil di Indonesia, terutama minyak bumi dan batu bara. Di sisi lain, kebutuhan akan energi listrik terus meningkat. Menurut BATAN, laju pertumbuhan kebutuhan listrik sebesar 7,1 persen hingga pada 2026. Dengan begitu, harus ada sumber energi lain untuk dimanfaatkan sebagai pembangkit listrik. Sumber energi alternatif tersebut antara lain energi surya, angin, air, biomass, termasuk nuklir.

Kedua, pembangkit listrik berbasis nuklir dianggap lebih ramah lingkungan daripada pembangkit listrik berbasis bahan bakar minyak. Emisi karbon dioksida pembangkit energi nuklir lebih rendah daripada batu bara, minyak bumi, gas alam, bahkan hidroenergi dan pembangkit energi surya.

 Ketiga, alasan ekonomis. Harga listrik yang dihasilkan nantinya akan lebih murah karena biaya produksi bisa ditekan. Sebagai perbandingan, 1 kg uranium sebagai bahan baku nuklir, setara dengan 1.000 – 3.000 ton batu bara.

Pemanfaatan nuklir dapat dikategorikan untuk makanan, obat-obatan, kesehatan dan kedokteran, industri, transportasi, desalinasi air, listrik dan senjata. Pemanfaatan radio isotop telah dilakukan untuk keperluan makanan yang berhubungan dengan rekayasa pertanian dan peternakan. Pemanfaatan bahan nuklir untuk obat-obatan, kesehatan, kedokteran dan industri juga diperoleh dari radio isotop. Untuk transportasi dapat dibagi menjadi dua tipe, yaitu pemanfaatan langsung reaktor nuklir untuk transportasi dan pemanfaatan secara tak langsung dengan produksi Hidrogen dari kelebihan panas reaktor nuklir, yang nantinya hidrogen tersebut dapat dimanfaatkan sebagai bahan bakar.


Diskusi dan Pembahasan

Pemanfaatan reaktor nuklir berskala kecil untuk kendaraan telah dilakukan untuk keperluan eksplorasi di daerah terisolir seperti di kutub oleh pemerintah rusia sekitar tahun 1950 an, hanya saja untuk skala kendaraan komersial masih belum bisa dilakukan. Dalam skala kapal selam telah banyak dilakukan dengan memanfaatkan reaktor kecil untuk menggerakan mesin kapal selam tersebut. Pemikiran lain adalah untuk transportasi luar angkasa. Pemanfaatan energi nuklir untuk keperluan transportasi diatas khususnya kendaraan eksplorasi, kapal selam dan pesawat luar angkasa, dikarenakan pemanfaatan bahan nuklir yang dapat dilakukan untuk jangka yang relatif panjang tanpa adanya refueling (penambahan bahan bakar baru selama reaktor beroperasi).

Menurut Drs. H. Marpuji Ali, M.Si bahwa sikap positif menggali manfaat setiap ciptaan Allah adalah dengan melakukan pengkajian ilmiah, mengoptimalkan fikr dan dzikr sebagai alat analisis (QS 3: 190–191). Karena itu, Islam mendorong umatnya untuk menjadi umat yang berpengetahuan, menguasai teknologi, dan menjadikan ilmu pengetahuan dan teknologi sebagai landasan membangun kehidupan berbangsa dan bernegara yang kuat.

Pengembangan sumber energi alternatif termasuk dalam wilayah ilmu pengetahuan teknologi. Semakin bervariasinya sumber energi baru dan terbarukan akan mengurangi ketergantungan terhadap energi fosil sekaligus mendayagunakan anugerah Allah kepada Bangsa Indonesia berupa melimpahnya kekayaan alam. Karena itu, riset sumber energi alternatif perlu didukung penuh oleh umat Islam pada khususnya dan masyarakat madani pada umumnya.


Fisi Nuklir


Secara umum, energi nuklir dapat dihasilkan melalui dua macam mekanisme, yaitu pembelahan inti atau reaksi fisi dan penggabungan beberapa inti melalui reaksi fusi. Di sini akan dibahas salah satu mekanisme produksi energi nuklir, yaitu reaksi fisi nuklir.

Sebuah inti berat yang ditumbuk oleh partikel (misalnya neutron) dapat membelah menjadi dua inti yang lebih ringan dan beberapa partikel lain. Mekanisme semacam ini disebut pembelahan inti atau fisi nuklir. Contoh reaksi fisi adalah uranium yang ditumbuk (atau menyerap) neutron lambat.



Reaksi fisi uranium seperti di atas menghasilkan neutron selain dua buah inti atom yang lebih ringan. Neutron ini dapat menumbuk (diserap) kembali oleh inti uranium untuk membentuk reaksi fisi berikutnya. Mekanisme ini terus terjadi dalam waktu yang sangat cepat membentuk reaksi berantai tak terkendali. Akibatnya, terjadi pelepasan energi yang besar dalam waktu singkat. Mekanisme ini yang terjadi di dalam bom nuklir yang menghasilkan ledakan yang dahsyat. Jadi, reaksi fisi dapat membentuk reaksi berantai tak terkendali yang memiliki potensi daya ledak yang dahsyat dan dapat dibuat dalam bentuk bom nuklir.


Dibandingkan dibentuk dalam bentuk bom nuklir, pelepasan energi yang dihasilkan melalui reaksi fisi dapat dimanfaatkan untuk hal-hal yang lebih berguna. Untuk itu, reaksi berantai yang terjadi dalam reaksi fisi harus dibuat lebih terkendali. Usaha ini bisa dilakukan di dalam sebuah reaktor nuklir. Reaksi berantai terkendali dapat diusahakan berlangsung di dalam reaktor yang terjamin keamanannya dan energi yang dihasilkan dapat dimanfaatkan untuk keperluan yang lebih berguna, misalnya untuk penelitian dan untuk membangkitkan listrik.



Di dalam reaksi fisi yang terkendali, jumlah neutron dibatasi sehingga hanya satu neutron saja yang akan diserap untuk pembelahan inti berikutnya. Dengan mekanisme ini, diperoleh reaksi berantai terkendali yang energi yang dihasilkannya dapat dimanfaatkan untuk keperluan yang berguna.


Reaktor Nuklir

Reaktor nuklir adalah tempat atau perangkat dimana reaksi nuklir berantai dibuat, diatur dan dijaga kesinambungannya pada laju yang tetap. Berlawanan dengan bom nuklir, dimana reaksi berantai terjadi pada orde pecahan detik, reaksi ini tidak terkontrol. (Wikipedia)

Sampai saat ini reaktor nuklir sudah dimanfaatkan dengan berbagai tujuan. Saat ini, reaktor nuklir paling banyak digunakan untuk membangkitkan listrik. Reaktor penelitian digunakan untuk pembuatan radioisotop (isotop radioaktif) dan untuk penelitian. Awalnya, reaktor nuklir pertama digunakan untuk memproduksi plutonium sebagai bahan senjata nuklir.

Saat ini, semua reaktor nuklir komersial berbasis pada reaksi fisi nuklir, dan sering dipertimbangkan masalah resiko keselamatannya. Sebaliknya, beberapa kalangan menyatakan PLTN merupakan cara yang aman dan bebas polusi untuk membangkitkan listrik. Daya fusi merupakan teknologi ekperimental yang berbasis pada reaksi fusi nuklir.

Ada beberapa piranti lain untuk mengendalikan reaksi nuklir, termasuk di dalamnya pembangkit thermoelektrik radioisotop dan baterai atom, yang membangkitkan panas dan daya dengan cara memanfaatkan peluruhan radioaktif pasif, seperti halnya Farnsworth-Hirsch fusor, dimana reaksi fusi nuklir terkendali digunakan untuk menghasilkan radiasi neutron.

Energi yang dihasilkan dalam reaksi fisi nuklir dapat dimanfaatkan untuk keperluan yang berguna. Untuk itu, reaksi fisi harus berlangsung secara terkendali di dalam sebuah reaktor nuklir. Sebuah reaktor nuklir paling tidak memiliki empat komponen dasar, yaitu elemen bahan bakar, moderator neutron, batang kendali, dan perisai beton.



Elemen bahan bakar menyediakan sumber inti atom yang akan mengalami fusi nuklir. Bahan yang biasa digunakan sebagai bahan bakar adalah uranium U. elemen bahan bakar dapat berbentuk batang yang ditempatkan di dalam teras reaktor.

Neutron-neutron yang dihasilkan dalam fisi uranium berada dalam kelajuan yang cukup tinggi. Adapun, neutron yang memungkinkan terjadinya fisi nuklir adalah neutron lambat sehingga diperlukan material yang dapat memperlambat kelajuan neutron ini. Fungsi ini dijalankan oleh moderator neutron yang umumnya berupa air. Jadi, di dalam teras reaktor terdapat air sebagai moderator yang berfungsi memperlambat kelajuan neutron karena neutron akan kehilangan sebagian energinya saat bertumbukan dengan molekul-molekul air.

Fungsi pengendalian jumlah neutron yang dapat menghasilkan fisi nuklir dalam reaksi berantai dilakukan oleh batang-batang kendali. Agar reaksi berantai yang terjadi terkendali dimana hanya satu neutron saja yang diserap untuk memicu fisi nuklir berikutnya, digunakan bahan yang dapat menyerap neutron-neutron di dalam teras reaktor. Bahan seperti boron atau kadmium sering digunakan sebagai batang kendali karena efektif dalam menyerap neutron.

Batang kendali didesain sedemikian rupa agar secara otomatis dapat keluar-masuk teras reaktor. Jika jumlah neutron di dalam teras reaktor melebihi jumlah yang diizinkan (kondisi kritis), maka batang kendali dimasukkan ke dalam teras reaktor untuk menyerap sebagian neutron agar tercapai kondisi kritis. Batang kendali akan dikeluarkan dari teras reaktor jika jumlah neutron di bawah kondisi kritis (kekurangan neutron), untuk mengembalikan kondisi ke kondisi kritis yang diizinkan.

Radiasi yang dihasilkan dalam proses pembelahan inti atom atau fisi nuklir dapat membahayakan lingkungan di sekitar reaktor. Diperlukan sebuah pelindung di sekeliling reaktor nuklir agar radiasi dari zat radioaktif di dalam reaktor tidak menyebar ke lingkungan di sekitar reaktor. Fungsi ini dilakukan oleh perisai beton yang dibuat mengelilingi teras reaktor. Beton diketahui sangat efektif menyerap sinar hasil radiasi zat radioaktif sehingga digunakan sebagai bahan perisai.


Pembangkit Listrik Tenaga Nuklir

Energi yang dihasilkan dari reaksi fisi nuklir terkendali di dalam reaktor nuklir dapat dimanfaatkan untuk membangkitkan listrik. Instalasi pembangkitan energi listrik semacam ini dikenal sebagai pembangkit listrik tenaga nuklir (PLTN).



Salah satu bentuk reaktor nuklir adalah reaktor air bertekanan (pressurized water reactor/PWR) yang skemanya ditunjukkan dalam gambar. Energi yang dihasilkan di dalam reaktor nuklir berupa kalor atau panas yang dihasilkan oleh batang-batang bahan bakar. Kalor atau panas dialirkan keluar dari teras reaktor bersama air menuju alat penukar panas (heat exchanger). Di sini uap panas dipisahkan dari air dan dialirkan menuju turbin untuk menggerakkan turbin menghasilkan listrik, sedangkan air didinginkan dan dipompa kembali menuju reaktor. Uap air dingin yang mengalir keluar setelah melewati turbin dipompa kembali ke dalam reaktor.

Untuk menjaga agar air di dalam reaktor (yang berada pada suhu 300oC) tidak mendidih (air mendidih pada suhu 100oC dan tekanan 1 atm), air dijaga dalam tekanan tinggi sebesar 160 atm. Tidak heran jika reaktor ini dinamakan reaktor air bertekanan.

Comments
0 Comments

Posting Komentar

:)) ;)) ;;) :D ;) :p :(( :) :( :X =(( :-o :-/ :-* :| 8-} :)] ~x( :-t b-( :-L x( :-q =))